本站内容搜索:
   您的位置:素材中国>>教程 >>网络编程 >>PHP编程 >>php下的RSA算法实现 提交错误报告
php下的RSA算法实现
[ 来源:素材中国 | 作者:| 时间:2006-08-11 23:51:36 | 浏览:人次 ]

 
  /*
* Implementation of the RSA algorithm
* (C) Copyright 2004 Edsko de Vries, Ireland
*
* Licensed under the GNU Public License (GPL)
*
* This implementation has been verified against [3]
* (tested Java/PHP interoperability).
*
* References:
* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996
* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online)
* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle,
* (open source cryptography library for Java, online)
* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note,
* version 1.5, revised November 1, 1993

*/

/*
* Functions that are meant to be used by the user of this PHP module.
*
* Notes:
* - $key and $modulus should be numbers in (decimal) string format
* - $message is expected to be binary data
* - $keylength should be a multiple of 8, and should be in bits
* - For rsa_encrypt/rsa_sign, the length of $message should not exceed
* ($keylength / 8) - 11 (as mandated by [4]).
* - rsa_encrypt and rsa_sign will automatically add padding to the message.
* For rsa_encrypt, this padding will consist of random values; for rsa_sign,
* padding will consist of the appropriate number of 0xFF values (see [4])
* - rsa_decrypt and rsa_verify will automatically remove message padding.
* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly
* ($keylength / 8) bytes long.
* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign
* expect a private key.

*/

function rsa_encrypt($message, $public_key, $modulus, $keylength)
{

    $padded = add_PKCS1_padding($message, true, $keylength / 8);
    $number = binary_to_number($padded);
    $encrypted = pow_mod($number, $public_key, $modulus);
    $result = number_to_binary($encrypted, $keylength / 8);
    
    return $result;
}


function rsa_decrypt($message, $private_key, $modulus, $keylength)
{

    $number = binary_to_number($message);
    $decrypted = pow_mod($number, $private_key, $modulus);
    $result = number_to_binary($decrypted, $keylength / 8);

    return remove_PKCS1_padding($result, $keylength / 8);
}


function rsa_sign($message, $private_key, $modulus, $keylength)
{

    $padded = add_PKCS1_padding($message, false, $keylength / 8);
    $number = binary_to_number($padded);
    $signed = pow_mod($number, $private_key, $modulus);
    $result = number_to_binary($signed, $keylength / 8);

    return $result;
}


function rsa_verify($message, $public_key, $modulus, $keylength)
{

    return rsa_decrypt($message, $public_key, $modulus, $keylength);
}


/*
* Some constants

*/

define("BCCOMP_LARGER", 1);

/*
* The actual implementation.
* Requires BCMath support in PHP (compile with --enable-bcmath)

*/

//--
// Calculate (p ^ q) mod r
//
// We need some trickery to [2]:
// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA
// applications, (p ^ q) is going to be _WAY_ too large.
// (I mean, __WAY__ too large - won't fit in your computer's memory.)
// (b) Still be reasonably efficient.
//
// We assume p, q and r are all positive, and that r is non-zero.
//
// Note that the more simple algorithm of multiplying $p by itself $q times, and
// applying "mod $r" at every step is also valid, but is O($q), whereas this
// algorithm is O(log $q). Big difference.
//
// As far as I can see, the algorithm I use is optimal; there is no redundancy
// in the calculation of the partial results.
//--

function pow_mod($p, $q, $r)
{

    // Extract powers of 2 from $q
$factors = array();
    $div = $q;
    $power_of_two = 0;
    while(bccomp($div, "0") == BCCOMP_LARGER)
    {

        $rem = bcmod($div, 2);
        $div = bcdiv($div, 2);
    
        if($rem) array_push($factors, $power_of_two);
        $power_of_two++;
    }


    // Calculate partial results for each factor, using each partial result as a
    // starting point for the next. This depends of the factors of two being
    // generated in increasing order.

$partial_results = array();
    $part_res = $p;
    $idx = 0;
    foreach($factors as $factor)
    {

        while($idx < $factor)
        {

            $part_res = bcpow($part_res, "2");
            $part_res = bcmod($part_res, $r);

            $idx++;
        }
        
        array_pus(
$partial_results, $part_res);
    }


    // Calculate final result
$result = "1";
    foreach($partial_results as $part_res)
    {

        $result = bcmul($result, $part_res);
        $result = bcmod($result, $r);
    }


    return $result;
}


//--
// Function to add padding to a decrypted string
// We need to know if this is a private or a public key operation [4]
//--

function add_PKCS1_padding($data, $isPublicKey, $blocksize)
{

    $pad_length = $blocksize - 3 - strlen($data);

    if($isPublicKey)
    {

        $block_type = "\x02";
    
        $padding = "";
        for($i = 0; $i < $pad_length; $i++)
        {

            $rnd = mt_rand(1, 255);
            $padding .= chr($rnd);
        }
    }

    else
    {

        $block_type = "\x01";
        $padding = str_repeat("\xFF", $pad_length);
    }

    
    return "\x00" . $block_type . $padding . "\x00" . $data;
}


//--
// Remove padding from a decrypted string
// See [4] for more details.
//--

function remove_PKCS1_padding($data, $blocksize)
{

    assert(strlen($data) == $blocksize);
    $data = substr($data, 1);

    // We cannot deal with block type 0
if($data{0} == '\0')
        die("Block type 0 not implemented.");

    // Then the block type must be 1 or 2
assert(($data{0} == "\x01")
 
 
       
   您的位置:素材中国>>教程 >>网络编程 >>PHP编程 >>php下的RSA算法实现
 点此在百度搜索关键字"php下的RSA算法实现"  点此在GOOGLE搜索关键字"php下的RSA算法实现"
热门文章:
  ·PHP生成缩略图的实现   ·PHP上传多个文件
  ·PHP中发送邮件的几种方法总结   ·PHP 调用 java类 常见配置错误
  ·自己写的一个PHP上传类   ·php下的RSA算法实现
  ·PHP百行代码快速构建简易聊天室   ·PHP实现简单线性回归之数学库的重要性
  ·php5的simplexml解析错误   ·使用PHP批量生成随机用户名

  首页  素材图片  高精图库  矢量图库  网页素材  网页模板  壁纸  明星  下载  教程  字体  香车美女  QQ专题  论坛

网站介绍 | 广告业务 | 设计业务 | 免责声明 | 版权声明 | 联系我们|提交错误报告
素材中国版权所有